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What is consciousness, and could
machines have it?
Stanislas Dehaene,1,2* Hakwan Lau,3,4 Sid Kouider5

The controversial question of whether machines may ever be conscious must be based on
a careful consideration of how consciousness arises in the only physical system that
undoubtedly possesses it: the human brain. We suggest that the word “consciousness”
conflates two different types of information-processing computations in the brain: the
selection of information for global broadcasting, thus making it flexibly available for
computation and report (C1, consciousness in the first sense), and the self-monitoring of
those computations, leading to a subjective sense of certainty or error (C2, consciousness
in the second sense). We argue that despite their recent successes, current machines
are still mostly implementing computations that reflect unconscious processing (C0)
in the human brain. We review the psychological and neural science of unconscious (C0)
and conscious computations (C1 and C2) and outline how they may inspire novel
machine architectures.

I
magine that you are driving when you sud-
denly realize that the fuel-tank light is on.
What makes you, a complex assembly of neu-
rons, aware of the light? And whatmakes the
car, a sophisticated piece of electronics and en-

gineering, unaware of it? What would it take for
the car to be endowed with a consciousness sim-
ilar to our own? Are those questions scientifically
tractable?
Alan Turing and John vonNeumann, the foun-

ders of the modern science of computation, en-
tertained the possibility that machines would
ultimately mimic all of the brain’s abilities, in-
cluding consciousness. Recent advances in artificial
intelligence (AI) have revived this goal. Refine-
ments in machine learning, inspired by neuro-
biology, have led to artificial neural networks

that approach or, occasionally, surpass humans
(1, 2). Although those networks do not mimic the
biophysical properties of actual brains, their de-
sign benefitted from several neurobiological in-
sights, including nonlinear input-output functions,
layerswith converging projections, andmodifiable
synaptic weights. Advances in computer hardware
and training algorithms now allow such networks
to operate on complex problems (such asmachine
translation) with success rates previously thought
to be the privilege of real brains. Are they on the
verge of consciousness?
We argue that the answer is negative: The com-

putations implemented by current deep-learning
networks correspond mostly to nonconscious op-
erations in the human brain. However, much like
artificial neural networks took their inspiration

from neurobiology, artificial consciousness may
progress by investigating the architectures that
allow the humanbrain to generate consciousness,
then transferring those insights into computer
algorithms. Our aim is to foster such progress
by reviewing aspects of the cognitive neuro-
science of consciousness that may be pertinent
for machines.

Multiple meanings of consciousness

The word “consciousness,” like many prescientific
terms, is used in widely different senses. In amed-
ical context, it is often used in an intransitive sense
(as in, “the patient was no longer conscious”), in
the context of assessing vigilance and wakeful-
ness. Elucidating the brain mechanisms of vigi-
lance is an essential scientific goal, with major
consequences for our understanding of sleep,
anesthesia, coma, or vegetative state. For lack of
space, we do not deal with this aspect here, how-
ever, because its computational impact seems
minimal: Obviously, a machine must be properly
turned on for its computations to unfold normally.
We suggest that it is useful to distinguish two

other essential dimensions of conscious compu-
tation.We label them using the terms global avail-
ability (C1) and self-monitoring (C2).

C1: Global availability

This corresponds to the transitivemeaning of con-
sciousness (as in “The driver is conscious of the
light”). It refers to the relationship between a
cognitive system and a specific object of thought,
such as a mental representation of “the fuel-tank
light.”This object appears to be selected for further
processing, including verbal and nonverbal report.
Information that is conscious in this sense be-
comes globally available to the organism; for ex-
ample, we can recall it, act upon it, and speak
about it. This sense is synonymous with “having
the information in mind”; among the vast re-
pertoire of thoughts that can become conscious
at a given time, only that which is globally avail-
able constitutes the content of C1 consciousness.

C2: Self-monitoring

Another meaning of consciousness is reflexive.
It refers to a self-referential relationship inwhich
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Conscious robots and computers has long been
a popular science fiction theme.Why do they
lack consciousness in reality, and how might
they develop it?
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the cognitive system is able to monitor its own
processing and obtain information about itself.
Human beings know a lot about themselves, in-
cluding such diverse information as the layout
and position of their body, whether they know
or perceive something, or whether they just
made an error. This sense of consciousness corre-
sponds to what is commonly called introspection,
or what psychologists call “meta-cognition”—
the ability to conceive andmake use of internal
representations of one’s own knowledge and
abilities.
We propose that C1 and C2 constitute orthog-

onal dimensions of conscious computations. This
is not to say that C1 and C2 do not involve over-
lapping physical substrates; in fact, as we review
below, in the human brain both depend on the
prefrontal cortex. But we argue that empirically
and conceptually, the twomay comeapart because
there can be C1 without C2, such as when re-
portable processing is not accompanied by ac-
curate metacognition, or C2 without C1, such
as when a self-monitoring operation unfolds
without being consciously reportable. As such,
it is advantageous to consider these computa-
tions separately before we consider their syn-
ergy. Furthermore, many computations involve
neither C1 nor C2 and therefore are properly
called “unconscious” (or C0 for short). It was
Turing’s original insight that even sophisticated
information processing can be realized by a
mindless automaton. Cognitive neuroscience con-
firms that complex computations such as face
or speech recognition, chess-game evaluation,
sentence parsing, and meaning extraction oc-
cur unconsciously in the human brain—under
conditions that yield neither global reportability
nor self-monitoring (Table 1). The brain appears
to operate, in part, as a juxtaposition of special-
ized processors or “modules” that operate non-
consciously and, we argue, correspond tightly
to the operation of current feedforward deep-
learning networks.
We next review the experimental evidence for

how human and animal brains handle C0-, C1-,
and C2-level computations, before returning to
machines and how they could benefit from this
understanding of brain architecture.

Unconscious processing (C0): Where
most of our intelligence lies

“We cannot be conscious of what we are not con-
scious of” (3). This truismhas deep consequences.
Becausewe are blind to our unconscious processes,
we tend to underestimate their role in ourmental
life. However, cognitive neuroscientists developed
various means of presenting images or sounds
without inducing any conscious experience (Fig. 1)
and then used behavioral and brain imaging to
probe their processing depth.
The phenomenon of priming illustrates the

remarkable depth of unconscious processing. A
highly visible target stimulus, such as the written
word “four,” is processedmore efficiently when
preceded by a related prime stimulus, such as
the Arabic digit “4,” even when subjects do not
notice the presence of the prime and cannot re-

liably report its identity. Subliminal digits, words,
faces, or objects can be invariantly recognized
and influencemotor, semantic, anddecision levels
of processing (Table 1). Neuroimaging methods
reveal that the vast majority of brain areas can be
activated nonconsciously.

Unconscious view-invariance and
meaning extraction in the human brain

Many of the difficult perceptual computations,
such as invariant face recognition or speaker-
invariant speech recognition, that were recently
addressed byAI correspond tononconscious com-
putations in the human brain (4–6). For instance,
processing someone’s face is facilitated when it is
preceded by the subliminal presentation of a to-
tally different view of the same person, indicat-
ing unconscious invariant recognition (Fig. 1).
Subliminal priming generalizes across visual-
auditory modalities (7, 8), revealing that cross-
modal computations that remain challenging
for AI software (such as extraction of semantic
vectors or speech-to-text) also involve unconscious
mechanisms. Even the semantic meaning of
sensory input can be processed without aware-
ness by the human brain. Comparedwith related

words (for example, animal-dog), semantic viola-
tions (for example, furniture-dog) generate a brain
response as late as 400 ms after stimulus onset
in temporal-lobe language networks, even if one
of the two words cannot be consciously detected
(9, 10).

Unconscious control and decision-making

Unconscious processes can reach even deeper
levels of the cortical hierarchy. For instance, sub-
liminal primes can influence prefrontal mecha-
nisms of cognitive control involved in the selection
of a task (11) or the inhibition of amotor response
(12). Neural mechanisms of decision-making in-
volve accumulating sensory evidence that affects
the probability of the various choices until a thres-
hold is attained. This accumulation of probabil-
istic knowledge continues to happen even with
subliminal stimuli (13–16). Bayesian inference
and evidence accumulation, which are cornerstone
computations for AI (2), are basic unconscious
mechanisms for humans.

Unconscious learning

Reinforcement learning algorithms, which cap-
ture how humans and animals shape their future
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Fig. 1. Examples of paradigms probing unconscious processing (C0). (Top) Subliminal view-
invariant face recognition (77). On each trial, a prime face is briefly presented (50 ms), surrounded
by masks that make it invisible, followed by a visible target face (500 ms). Although subjective
perception is identical across conditions, processing is facilitated whenever the two faces
represent the same person, in same or different view. At the behavioral level, this view-invariant
unconscious priming is reflected in reduced reaction time in recognizing the target face. At the
neural level, it is reflected in reduced cortical response to the target face (repetition suppression)
in the fusiform face area of the human inferotemporal cortex. (Bottom) Subliminal accumulation
of evidence during interocular suppression (16). Presentation of salient moving dots in one eye
prevents the conscious perception of paler moving dots in the opposite eye. Despite their
invisibility, the gray dots facilitate performance when they moved in the same direction as a
subsequent dot display, an effect proportional to their amount of motion coherence. This
facilitation only affects a first-order task (judging the direction of motion), not a second-order
metacognitive judgement (rating the confidence in the first response). A computational model of
evidence accumulation proposes that subliminal motion information gets added to conscious
information, thus biasing and shortening the decision.
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actions on the basis of history of past rewards,
have excelled in attaining supra-human AI per-
formance in several applications, such as playing
Go (1). Remarkably, in humans, such learning
appears to proceed even when the cues, reward,
or motivation signals are presented below the
consciousness threshold (17, 18).
Complex unconscious computations and in-

ferences routinely occur in parallel within
various brain areas. Many of these C0 compu-
tations have now been captured by AI, partic-
ularly by using feedforward convolutional neural

networks (CNNs). We next consider what addi-
tional computations are required for conscious
processing.

C1: Global availability of relevant
information
The need for integration and
coordination

The organization of the brain into computation-
ally specialized subsystems is efficient, but this
architecture also raises a specific computational
problem: The organism as a whole cannot stick

to a diversity of probabilistic interpretations; it
must act and therefore cut through the multiple
possibilities and decide in favor of a single course
of action. Integrating all of the available evidence
to converge toward a single decision is a compu-
tational requirement that, we contend, must be
faced by any animal or autonomous AI system
and corresponds to our first functional definition
of consciousness: global availability (C1).
For example, elephants, when thirsty, manage

to determine the location of the nearest water
hole and move straight to it, from a distance of 5
to 50 km (19). Such decision-making requires a
sophisticated architecture for (i) efficiently pool-
ing over all available sources of information,
including multisensory and memory cues; (ii)
considering the available options and selecting
the best one on the basis of this large information
pool; (iii) sticking to this choice over time; and (iv)
coordinating all internal and external processes
toward the achievement of that goal. Primitive
organisms, such as bacteria, may achieve such
decision solely through an unconscious compe-
tition of uncoordinated sensorimotor systems.
This solution, however, fails as soon as it becomes
necessary to bridge over temporal delays and to
inhibit short-term tendencies in favor of longer-
term winning strategies. Coherent, thoughtful
planning required a specific C1 architecture.

Consciousness as access to an internal
global workspace

We hypothesize that consciousness in the first
sense (C1) evolved as an information-processing
architecture that addresses this information-pooling
problem (20–23). In this view, the architecture of
C1 evolved to break the modularity and parallel-
ism of unconscious computations. On top of a
deep hierarchy of specialized modules, a “global
neuronalworkspace,”with limited capacity, evolved
to select a piece of information, hold it over time,
and share it across modules. We call “conscious”
whichever representation, at a given time, wins
the competition for access to this mental arena
and gets selected for global sharing and decision-
making. Consciousness is therefore manifested
by the temporary dominance of a thought or
train of thoughts over mental processes, so that
it can guide a broad variety of behaviors. These
behaviors include not only physical actions but
also mental ones, such as committing informa-
tion to episodic memory or routing it to other
processors.

Relation between consciousness
and attention

William James described attention as “the taking
possession by the mind, in clear and vivid form,
of one out of what seem several simultaneously
possible objects or trains of thought” (24). This
definition is close to what we mean by C1: the
selection of a single piece of information for entry
into the global workspace. There is, however, a
clear-cut distinction between this final step,which
corresponds to conscious access, and the previous
stages of attentional selection, which can operate
unconsciously.Many experiments have established
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Fig. 2. Global availability: Consciousness in the first sense (C1). Conscious subjective percepts
are encoded by the sudden firing of stimulus-specific neural populations distributed in inter-
connected, high-level cortical areas, including the lateral prefrontal cortex, anterior temporal cortex,
and hippocampus. (Top) During binocular flash suppression, the flashing of a picture to one eye
suppresses the conscious perception of a second picture presented to the other eye. As a result, the
same physical stimulus can lead to distinct subjective percepts. This example illustrates a prefrontal
neuron sensitive to faces and unresponsive to checkers, whose firing shoots up in tight association with
the sudden onset of subjective face perception (31). (Bottom) During masking, a flashed image, if
brief enough and followed by a longer “mask,” can remain subjectively invisible. Shown is a neuron in the
entorhinal cortex firing selectively to the concept of “World Trade Center.” Rasters in red indicate trials
in which the subject reported recognizing the picture (blue indicates no recognition). Under masking,
when the picture is presented for only 33 ms there is little or no neural activity; but once presentation
time is longer than the perceptual threshold (66 ms or larger), the neuron fires substantially only on
recognized trials. Overall, even for identical objective input (same duration), spiking activity is higher and
more stable for recognized trials (38).
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the existence of dedicatedmechanisms of attention
orienting and shown that, like any other process-
ors, they can operate nonconsciously: (i) In the
top-down direction, attention can be oriented
toward an object, amplify its processing, and yet
fail to bring it to consciousness (25); (ii) in the
bottom-up direction, attention can be attracted
by a flash, even if this stimulus ultimately re-
mains unconscious (26). What we call attention
is a hierarchical system of sieves that operate un-
consciously. Such unconscious systems compute
with probability distributions, but only a single
sample, drawn from this probabilistic distribution,
becomes conscious at a given time (27, 28). We
may become aware of several alternative inter-
pretations, but only by sampling their uncon-
scious distributions over time (29, 30).

Evidence for all-or-none selection in a
capacity-limited system

Theprimate brain comprises a conscious bottleneck
and can only consciously access a single item at a
time (Table 1). For instance, rivaling pictures or

ambiguous words are perceived in an all-or-none
manner; at any given time,we subjectively perceive
only a single interpretation out ofmany possible
ones [even though the others continue to be pro-
cessedunconsciously (31, 32)]. The serial operation
of consciousness is attested by phenomena such
as the attentional blink and the psychological re-
fractory period, in which conscious access to a
first itemA prevents or delays the perception of a
second competing item B (9, 27, 30, 33–35). Such
interference with the perception of B is triggered
by the mere conscious perception of A, even if no
task is performed (36). Thus C1 consciousness is
causally responsible for a serial information-
processing bottleneck.

Evidence for integration and broadcasting

Brain imaging in humans andneuronal recordings
inmonkeys indicate that the conscious bottleneck
is implemented by a network of neurons that is
distributed through the cortex, but with a stron-
ger emphasis on high-level associative areas.
Listed in Table 1 are some of the publications

that have evidenced an all-or-none “ignition” of
this network during conscious perception by using
a variety of brain-imaging techniques. Single-cell
recordings indicate that each specific conscious
percept, such as a person’s face, is encoded by the
all-or-none firing of a subset of neurons in high-
level temporal and prefrontal cortices, whereas
others remain silent (Fig. 2) (31, 32, 37, 38).

Stability as a feature of consciousness

Direct contrasts between seen and unseen pic-
tures or words confirm that such ignition occurs
only for the conscious percept. As explained earlier,
nonconscious stimulimay reach into deep cortical
networks and influence higher levels of process-
ing and even central executive functions, but these
effects tend to be small, variable, and short-lived
[although nonconscious information decays at a
slower rate than initially expected (39, 40)]. By
contrast, the stable, reproducible representation
of high-quality information by a distributed ac-
tivity pattern in higher cortical areas is a feature
of conscious processing (Table 1). Such transient
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Table 1. Examples of computations pertaining to information-processing levels C0, C1 and C2 in the human brain.

Computation Examples of experimental findings References

C0: Unconscious processing
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Invariant visual recognition Subliminal priming by unseen words and faces, invariant for font, size, or viewpoint. (5)
... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ...

Functional MRI (fMRI) and single-neuron response to unseen words and faces (33, 37, 78, 79)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Unconscious judgement of chess game configurations (80)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Access to meaning N400 response to unseen out-of-context words (9, 10)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Cognitive control Unconscious inhibition or task set preparation by an unseen cue (11, 12)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Reinforcement learning Subliminal instrumental conditioning by unseen shapes (17)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

C1: Global availability of information
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

All-or-none selection and

broadcasting of a relevant content

Conscious perception of a single picture during visual rivalry (29)
... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ...

Conscious perception of a single detail in a picture or stream (28, 81)
... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ...

All-or-none memory retrieval (82)
... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ...

Attentional blink: Conscious perception of item A

prevents the simultaneous perception of item B

(27, 30, 83, 84)

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

All-or-none “ignition” of event-related potentials and

fMRI signals, only on trials with conscious perception

(33–35, 85–87)

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

All-or-none firing of neurons coding for the perceived

object in prefrontal cortex and other higher areas

(31, 32, 37, 38, 88)

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Stabilization of short-lived

information for off-line processing

Brain states are more stable when information is consciously

perceived; unconscious information quickly decays (~1 s)

(39, 89)

... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ...

Conscious access may occur long after the stimulus is gone (90)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Flexible routing of information Only conscious information can be routed through a series

of successive operations (for example, successive calculations 3 × 4 + 2)

(91)

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Sequential performance of

several tasks

Psychological refractory period: Conscious processing

of item A delays conscious processing of item B

(34, 92)

... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ...

Serial calculations or strategies require conscious perception (13, 91)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Serial organization of spontaneous brain activity during conscious thought in the “resting state” (93)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

C2: Self-monitoring
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Self-confidence Humans accurately report subjective confidence,

a probabilistic estimate in the accuracy of a decision or computation

(51, 55)

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Evaluation of one’s knowledge Humans and animals can ask for help or “opt out” when unsure (53, 65, 66)
... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ...

Humans and animals know when they do not know or remember (49, 53)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Error detection Anterior cingulate response to self-detected errors (61, 65, 94)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Listing one’s skills Children know the arithmetic procedures at their disposal, their speed, and error rate. (70)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Sharing one’s confidence with others Decision-making improves when two persons share knowledge (69)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .
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“meta-stability” seems to be necessary for the
nervous system to integrate information from a
variety of modules and then broadcast it back to
them, achieving flexible cross-module routing.

C1 consciousness in human and
nonhuman animals

C1 consciousness is an elementary property that is
present inhuman infants (41) aswell as in animals.
Nonhuman primates exhibit similar visual illu-
sions (31, 32), attentional blink (42), and central
capacity limits (43) as human subjects. The pre-
frontal cortex appears to act as a central infor-
mation sharing device and serial bottleneck in
both human and nonhuman primates (43). The
considerable expansion of the prefrontal cortex in
the human lineagemay have resulted in a greater
capacity for multimodal convergence and inte-
gration (44–46). Furthermore, humans possess
additional circuits in the inferior prefrontal cortex
for verbally formulating and reporting informa-
tion to others. The capacity to report information
through language is universally considered one
of the clearest signs of conscious perception be-
cause once information has reached this level of
representation in humans, it is necessarily avail-
able for sharing acrossmentalmodules and there-
fore conscious in the C1 sense. Thus, although
language is not required for conscious percep-
tion and processing, the emergence of language
circuits in humans may have resulted in a con-
siderable increase in the speed, ease, and flexibil-
ity of C1-level information sharing.

C2: Self-monitoring

Whereas C1 consciousness reflects the capacity to
access external information, consciousness in
the second sense (C2) is characterized by the
ability to reflexively represent oneself (47–50).
A substantial amount of research in cognitive
neuroscience and psychology has addressed self-
monitoring under the term of “metacognition,”
which is roughly defined as cognition about cog-
nition or knowing about knowing. Below, we re-
view the mechanisms by which the primate brain
monitors itself, while stressing their implications
for building self-reflective machines.

A probabilistic sense of confidence

When making a decision, humans feel more or
less confident about their choice. Confidence can
be defined as a sense of the probability that a
decision or computation is correct (51). Almost
anytime the brain perceives or decides, it also
estimates its degree of confidence. Learning is
also accompanied by a quantitative sense of con-
fidence; humans evaluate how much trust they
have inwhat they have learned and use it to weigh
past knowledge versus present evidence (52). Con-
fidence can be assessed nonverbally, either retro-
spectively, by measuring whether humans persist
in their initial choice, or prospectively, by allowing
them to opt out from a task without even at-
tempting it. Both measures have been used in
nonhuman animals to show that they too possess
metacognitive abilities (53). By contrast, most cur-
rent neural networks lack them: Although they

can learn, they generally lack meta-knowledge
of the reliability and limits of what has been
learned. A noticeable exception is biologically
constrained models that rely on Bayesian mech-
anisms to simulate the integration of multiple
probabilistic cues in neural circuits (54). These
models have been fruitful in describing how
neural populations may automatically compute
the probability that a given process is performed
successfully. Although these implementations re-
main rare and have not addressed the same range
of computational problems as has traditional AI,
they offer a promising venue for incorporating
uncertaintymonitoring in deep learning networks.

Explicit confidence in prefrontal cortex

According to Bayesian accounts, each local cortical
circuit may represent and combine probability
distributions in order to estimate processing

uncertainty (54). However, additional neural cir-
cuits may be required in order to explicitly ex-
tract and manipulate confidence signals. Magnetic
resonance imaging (MRI) studies in humans and
physiological recordings in primates and even in
rats have specifically linked such confidence pro-
cessing to the prefrontal cortex (55–57). Inactivation
of the prefrontal cortex can induce a specific
deficit in second-order (metacognitive) judgements
while sparing performance on the first-order task
(56, 58). Thus, circuits in the prefrontal cortex
may have evolved to monitor the performance of
other brain processes.

Error detection: Reflecting on one’s
own mistakes

Error detection provides a particularly clear ex-
ample of self-monitoring; just after responding,
we sometimes realize that we made an error and
change our mind. Error detection is reflected by
two components of electroencephalography (EEG)
activity: the error-relativity negativity (ERN) and
the positivity upon error (Pe), which emerge in
cingulate and medial prefrontal cortex just after
a wrong response but before any feedback is re-
ceived. How can the brain make a mistake and
detect it? One possibility is that the accumulation
of sensory evidence continues after a decision is
made, and an error is inferred whenever this fur-
ther evidence points in the opposite direction (59).
A second possibility, more compatible with the
remarkable speed of error detection, is that two
parallel circuits, a low-level sensory-motor circuit
and ahigher-level intention circuit, operate on the
same sensory data and signal an error whenever
their conclusions diverge (60, 61).

Meta-memory

Humans do not just know things about theworld;
they actually know that they know or that they

do not know. A familiar example is having a word
“on the tip of the tongue.” The term “meta-
memory” was coined to capture the fact that hu-
mans report feelings of knowing, confidence,
and doubts on their memories. Meta-memory is
thought to involve a second-order system thatmon-
itors internal signals (such as the strength and
quality of a memory trace) to regulate behavior.
Meta-memory is associated with prefrontal struc-
tures whose pharmacological inactivation leads to
a metacognitive impairment while sparing mem-
ory performance itself (56). Metamemory is crucial
to human learning and education by allowing
learners to develop strategies such as increasing
the amount of study or adapting the time allo-
cated to memory encoding and rehearsal (49).

Reality monitoring

In addition to monitoring the quality of sensory
and memory representations, the human brain
must also distinguish self-generated versus external-
ly driven representations. Indeed, we can perceive
things, but we also conjure them from imagination
or memory. Hallucinations in schizophrenia have
been linked to a failure to distinguish whether
sensory activity is generated by oneself or by the
external world (62). Neuroimaging studies have
linked this kind of reality monitoring to the ante-
rior prefrontal cortex (63). In nonhumanprimates,
neurons in the prefrontal cortex distinguish be-
tween normal visual perception and active main-
tenance of the same visual content inmemory (64).

Foundations of C2 consciousness
in infants

Self-monitoring is such a basic ability that it
is already present during infancy (Fig. 3). The
ERN, indicating error monitoring, was ob-
served when 1-year-old infants made a wrong
choice in a perceptual decision task (65). Sim-
ilarly, after 1-½-year-old infants pointed to
one of two boxes in order to obtain a hidden
toy, they waited longer for an upcoming re-
ward (such as a toy) when their initial choice
was correct than when it was wrong, suggest-
ing that they monitored the likelihood that their
decision was right (57, 65). Moreover, when given
the opportunity to ask (nonverbally) their par-
ents for help they chose this opt-out option spe-
cifically in trials in which they were likely to be
wrong, revealing a prospective estimate of their
own uncertainty (66). That infants can commu-
nicate their own uncertainty to other agents
further suggests that they consciously experience
metacognitive information. Thus, infants are al-
ready equipped with the ability to monitor their
own mental states. Facing a world where every-
thing remains to be learned, C2 mechanisms
allow them to actively orient toward domains
that they know they do not know—a mechanism
that we call “curiosity.”

Dissociations between C1 and C2

According to our analysis, C1 and C2 are largely
orthogonal and complementary dimensions of
what we call consciousness. On one side of this
double dissociation, self-monitoring can exist for
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unreportable stimuli (C2 without C1). Automatic
typing provides a good example: Subjects slow
down after a typing mistake, even when they fail
to consciously notice the error (67). Similarly, at
the neural level, an ERN can occur for subjective-
ly undetected errors (68). On the other side of this
dissociation, consciously reportable contents
sometimes fail to be accompanied with an ade-
quate sense of confidence (C1 without C2). For
instance, when we retrieve a memory, it pops
into consciousness (C1) but sometimes without
any accurate evaluation of its confidence (C2),
leading to false memories. As noted by Marvin
Minsky, “what we call consciousness [in the C1
sense] is a very imperfect summary in one part
of the brain of what the rest is doing.” The im-
perfection arises in part from the fact that the
global workspace reduces complex parallel sen-
sory streams of probabilistic computation to a
single conscious sample (27–29). Thus, prob-
abilistic information is often lost on the way,
and subjects feel over-confident in the accuracy
of their perception.

Synergies between C1 and
C2 consciousness

Because C1 and C2 are orthogonal, their joint
possession may have synergistic benefits to or-
ganisms. In one direction, bringing probabilistic
metacognitive information (C2) into the global
workspace (C1) allows it to be held over time,
integrated into explicit long-term reflection, and
shared with others. Social information sharing
improves decisions: By sharing their confidence
signals, two persons achieve a better perform-
ance in collective decision-making than that of
either person alone (69). In the converse direction,
the possession of an explicit repertoire of one’s
own abilities (C2) improves the efficiency with
whichC1 information is processed. Duringmental
arithmetic, children can perform a C2-level eval-
uation of their available competences (for exam-
ple, counting, adding, multiplying, or memory
retrieval) and use this information to evaluate
how to best face a given arithmetic problem (70).
This functionality requires a single “common
currency” for confidence across different mod-
ules, which humans appear to possess (71).

Endowing machines with C1 and C2

How couldmachines be endowedwith C1 and C2
computations? Let us return to the car light ex-
ample. In currentmachines, the “low gas” light is
a prototypical example of an unconscious modu-
lar signal (C0). When the light flashes, all other
processors in the machine remain uninformed
and unchanged; fuel continues to be injected in
the carburetor, and the car passes gas stations
without stopping (although they might be pre-
sent on the GPSmap). Current cars or cell phones
are mere collections of specialized modules that
are largely “unaware” of each other. Endowing
thismachine with global information availability
(C1) would allow these modules to share infor-
mation and collaborate to address the impending
problem (much like humans do when they be-
come aware of the light, or elephants of thirst).

Although AI has met considerable success in
solving specific problems, implementing multiple
processes in a single system and flexibly coor-
dinating them remain difficult problems. In the
1960s, computational architectures called “black-
board systems”were specifically designed to post
information and make it available to other mod-
ules in a flexible and interpretable manner, sim-
ilar in flavor to a global workspace (20). A recent
architecture called Pathnet uses a
genetic algorithm to learnwhichpath
through its many specialized neural
networks is most suited to a given
task (72). This architecture exhibits
robust, flexible performance and
generalization across tasks and may
constitute a first step towardprimate-
like conscious flexibility.
To make optimal use of the information pro-

vided by the fuel-gauge light, it would also be
useful for the car to possess a database of its own
capacities and limits. Such self-monitoring (C2)
would include an integrated image of itself—
including its current location and fuel consump-
tion, for example—aswell as its internal databases
(such as “knowing” that it possesses a GPS map
that can locate gas stations). A self-monitoring
machine would keep a list of its subprograms,
compute estimates of their probabilities of suc-
ceeding at various tasks, and constantly update
them (for example, noticing when a part fails).

Most present-day machine-learning systems are
devoid of any self-monitoring; they compute (C0)
without representing the extent and limits of their
knowledge or the fact that others may have a dif-
ferent viewpoint than their own. There are a few
exceptions: Bayesian networks (54) or programs
(73) compute with probability distributions and
therefore keep track of how likely they are to be
correct. Even when the primary computation is

performed by a classical CNN, and
is therefore opaque to introspection,
it is possible to train a second, hier-
archically higher neural network to
predict the first one’s performance
(47). This approach, in which a
system redescribes itself, has been
claimed to lead to “the emergence
of internal models that are meta-

cognitive in nature and…make it possible for an
agent to develop a (limited, implicit, practical)
understanding of itself” (48). Pathnet (72) uses a
related architecture to track which internal con-
figurations are most successful at a given task
and use this knowledge to guide subsequent pro-
cessing. Robots have also been programed tomon-
itor their learning progress and use it to orient
resources toward the problems that maximize
information gain, thus implementing a form of
curiosity (74).
An important element of C2 that has received

relatively little attention is reality monitoring.
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Fig. 3. Self-monitoring: Consciousness in the second sense (C2). Self-monitoring (also called
“meta-cognition”), the capacity to reflect on one’s own mental state, is available early during infancy.
(Top) One-and-a-half-year-old infants, after deciding to point to the location of a hidden toy,
exhibit two types of evidence for self-monitoring of their decision. (i) They persist longer in searching
for the hidden object within the selected box when their initial choice was correct than when it
was incorrect. (ii) When given the opportunity to ask for help, they use this option selectively to
reduce the probability of making an error. (Bottom) One-year-old infants were presented with either
a meaningless pattern or a face that was either visible or invisible (depending on its duration)
and then decided to gaze left or right in anticipation of face reappearance. As for manual search,
post-decision persistence in waiting at the same gaze location increased for correct compared with
incorrect initial decisions. Moreover, EEG signals revealed the presence of the error-related negativity
over fronto-central electrodes when infants make an incorrect choice. These markers of metacognition
were elicited by visible but not by invisible stimuli, as also shown in adults (61).
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Bayesian approaches to AI (2, 73) have recognized
the usefulness of learning generative models that
can be jointly used for actual perception (present),
prospective planning (future), and retrospective
analysis (past). In humans, the same sensory
areas are involved in both perception and imag-
ination. As such, somemechanisms are needed to
tell apart self-generated versus externally triggered
activity. A powerful method for training gener-
ative models, called adversarial learning (75),
involves having a secondary network “compete”
against a generative network so as to critically
evaluate the authenticity of self-generated repre-
sentations. When such reality monitoring (C2)
is coupled with C1 mechanisms, the resulting
machine may more closely mimic human con-
sciousness in terms of affording global access
to perceptual representations while having an
immediate sense that their content is a genuine
reflection of the current state of the world.

Concluding remarks

Our stance is based on a simple hypothesis: What
we call “consciousness” results from specific types
of information-processing computations, physi-
cally realized by the hardware of the brain. It
differs from other theories in being resolutely
computational; we surmise thatmere information-
theoretic quantities (76) do not suffice to define
consciousness unless one also considers the nature
and depth of the information being processed.
We contend that a machine endowed with C1

andC2would behave as though itwere conscious;
for instance, it would know that it is seeing some-
thing, would express confidence in it, would report
it to others, could suffer hallucinations when its
monitoring mechanisms break down, and may
even experience the same perceptual illusions as
humans. Still, such a purely functional definition
of consciousness may leave some readers unsatis-
fied. Are we “over-intellectualizing” consciousness,
by assuming that some high-level cognitive func-
tions are necessarily tied to consciousness? Are we
leaving aside the experiential component (“what
it is like” to be conscious)? Does subjective ex-
perience escape a computational definition?
Although those philosophical questions lie be-

yond the scope of the present paper, we close by
noting that empirically, in humans the loss of C1
and C2 computations covaries with a loss of sub-
jective experience. For example, in humans, dam-
age to the primary visual cortex may lead to a
neurological condition called “blindsight,” in
which the patients report being blind in the af-
fected visual field. Remarkably, those patients can
localize visual stimuli in their blind field but
cannot report them (C1), nor can they effective-
ly assess their likelihood of success (C2)—they
believe that they are merely “guessing.” In this
example, at least, subjective experience appears
to cohere with possession of C1 and C2. Although
centuries of philosophical dualism have led us
to consider consciousness as unreducible to
physical interactions, the empirical evidence is
compatible with the possibility that conscious-
ness arises from nothing more than specific
computations.
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tions and have metacognitive capacity, 

such as confidence estimates. If these types 

of processes were strongly indicative of 

consciousness, we would have to admit 

that some machines are already conscious.

We agree with Dehaene et al. that to 

address the question of machine conscious-

ness, we must start with a theory of human 

consciousness. Given current disagreement 

on that topic, we are all left to speculate 

whether machines will ever be conscious. A 

more pertinent question for the field might 

be: “What would constitute successful 

demonstration of artificial consciousness?”
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Conscious machines: 
Robot  rights 
In their Review “What is consciousness, 

and could machines have it?” (27 October 

2017, p. 486), S. Dehaene et al. suggest 

that machine consciousness, which would 

model human cognitive functions within 

a physical architecture other than the 

human brain, has not yet been achieved. 

Creating consciousness is still a goal for 

the future, but now is the time to consider 

the implications of conscious machines.

Developing machine capacities such as 

artificial intelligence (AI) and robots for 

human-robot interaction is of extreme 

technological value, but it raises moral and 

ethical questions. For example, one of the 

major sectors in robotics is the develop-

ment of sexual robots (1). Although some 

researchers consider this phenomenon a 

gateway to the future acceptance of human-

robot interactions, others see a danger for 

human society as robots modify the social 

representation of human behaviors (2, 3). 

The robotics field must wrestle with these 

questions: Is it ethical to create and con-

tinue to use robots with consciousness in 

the way we use robots that were originally 

designed for our needs? Do robots deserve 

to be protected? This debate could challenge 

the limits of human morality and polarize 

society’s views on whether conscious robots 

are objects or living entities (4–6).

As we approach an era when conscious 

robots become part of daily life, it is 

important to start thinking about the cur-

rent status of robots today. The purpose of 

granting legal status to robots is not only 

to prevent inappropriate human-robot 

interactions but also to recognize and 

formalize the role of robots in society, thus 

normalizing their existence (7).

Nicolas Spatola* and Karolina Urbanska
Université Clermont Auvergne, CNRS, LAPSCO, 
F-63000 Clermont-Ferrand, France.
*Corresponding author. Email: nicolas.spatola@uca.fr 

REFERENCES

 1. M. Scheutz, T. Arnold, “Intimacy, bonding, and sex robots: 
Examining empirical results and exploring ethical rami-
fications” (2017); https://hrilab.tufts.edu/publications/
scheutz2017intimacy.pdf.

 2. J. Robertson, Body Soc. 16, 1 (2010).
 3. M. Coeckelbergh, Int. J. Soc Robot. 1, 217 (2009).
 4. P. Lin et al., Eds., Robot Ethics (MIT Press, 2012).
 5. A. L. Peláez, D. Kyriakou, Technol. Forecast. Soc. Change 75, 

1176 (2008). 
 6. K. Richardson, Comp. Soc. 45, 290 (2016).
 7. I. Yeoman, M. Mars, Futures 44, 365 (2012).

10.1126/science.aar5059

Response

Any discussion of machine consciousness 

should start with empirical evidence, and 

our Review primarily consists of an empiri-

cal look at how nonconscious and conscious 

processing differ in humans [see also (1, 2)]. 

In contrast to Carter et al.’s interpretation of 

our conclusions, we suggest that conscious 

subjective states are in fact on the verge of 

becoming implementable in machines and 

that two computational ingredients (global 

information sharing and self-monitoring), if 

jointly and correctly implemented, may pro-

vide machines with conscious subjectivity.

Conscious robots may merit 

legal protections.

LETTERS

Conscious machines:
Defining questions
In their Review “What is consciousness, 

and could machines have it?” (27 October 

2017, p. 486), S. Dehaene et al. argue that 

the science of consciousness indicates that 

we are not on the verge of creating con-

scious machines. However, Dehaene et al. 

ask and answer the wrong questions.

To determine whether machines are 

conscious, we must ask whether they 

have subjective experiences: Do machines 

consciously perceive and sense colors, 

sounds, and smells? Do they feel emotions? 

Unfortunately, Dehaene et al. relegate 

this issue to the final paragraph of their 

Review, dismissing it as a philosophical 

question “beyond the scope of the present 

paper.” Instead, they ask whether machines 

“mimic” consciousness by exhibiting the 

global availability of information (the 

ability to select, access, and report infor-

mation) and metacognition (the capacity 

for self-monitoring and confidence estima-

tion). Questions concerning to what extent 

machines have these capacities are inter-

esting, but neither capacity is necessary 

or sufficient for subjective experience (1, 

2). Furthermore, Dehaene et al.’s emphasis 

on metacognition and global broadcasting 

presumes that the prefrontal cortex is the 

home of consciousness, which remains a 

matter of debate (3, 4). 

Finally, when arguing that machines are 

not yet conscious, Dehaene et al. highlight 

the “feedforward”—i.e., sequential—nature 

of information processing typical of these 

computing systems. Although current 

machines may not exhibit propagation of 

information into the broadcasting network 

hub or formal Bayesian metacognition, 

many artificial intelligence systems involve 
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Carter et al. claim that “neither capac-

ity is necessary or sufficient for subjective 

experience,” but that is begging the 

question. It is possible that the subjec-

tive experiences of humans are simply 

information-bearing representations with 

the same specific properties we used for 

those of machines: being globally available 

and therefore reportable, and entering into 

dedicated self-monitoring processes capa-

ble of evaluation and criticism. Empirical 

evidence suggests that whenever human 

subjective experience is impaired, such as 

in psychosis (3) or blindsight (4), aspects of 

both of these processing functions are also 

disrupted. Thus, our working hypothesis 

is that subjective experience comes down 

to nothing but a combination of specific 

forms of processing (including reality 

monitoring as a crucial component). 

It has been suggested that failing to 

recognize that machines may have subjec-

tive states reflects a lack of imagination 

(5). In fact, many if not all visual illusions, 

in which subjective perception diverges 

from objective reality, arise from efficient 

computing, such as applying a Bayesian 

prior to noisy inputs (6) or taking efficient 

shortcuts in otherwise intractable compu-

tations (7). Thus, such subjective percepts 

would arise in any efficient machine.

To move forward, Carter et al. point out 

that it would be advantageous if we could 

agree on the criteria that demonstrate 

consciousness. But it is precisely because 

we lack such a consensus that we think it is 

best to start with empirical evidence based 

on the known features of the human brain. 

Rapid progress in mapping the human 

brain mechanisms of consciousness has 

indeed revealed an important contribution 

of the prefrontal cortex [e.g., (8–10)].  

When machines share enough features 

with conscious human brain process-

ing, we should be prepared to accept the 

possibility that they are conscious. Of 

course, even if a machine shared those 

features and reported having subjective 

experiences, Carter et al. could still deny 

that it experienced anything at all. But 

such a solipsist position also applies to 

humans: By such a standard, we likewise 

cannot prove that other human beings are 

conscious. This position, and the associated 

insistence on “qualia” and the “hard prob-

lem” of consciousness, are unproductive 

(11). In the future, denying machines any 

form of subjectivity, when it is caused 

by computations similar to those that 

constitute core ingredients of conscious-

ness in the human brain, may become as 

contentious as denying it to other human 

beings or to nonhuman animals with brain 

architectures similar to ours.

We therefore agree with Spatola and 

Urbanska that the predictable emergence of 

conscious machines calls for an immediate 

consideration of its societal consequences. 

The potential benefits should not be 

neglected: A powerful sentient artificial 

intelligence (AI) may collaborate with 

humans in addressing major issues such 

as energy management, ecology, or care in 

an aging society. The risks, however, are 

equally real and include job loss, concen-

tration of power in a few hands, a military 

arms race, and social upheaval as humans 

and AI increasingly compete for the same 

societal roles. Mitigating these disorders 

will require a major international effort, 

and we can only heed here the conclu-

sion of a recent academic statement on 

the power and limits of AI (12): “Just like 

crash tests for transportation, the passing 
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of ethical and safety tests, evaluating, for 

instance, social impact or racial prejudice, 

could become a prerequisite to the release 

of [artificial intelligence] software.”
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TECHNICAL COMMENT ABSTRACTS

Comment on “Precipitation drives global 

variation in natural selection”

Isla H. Myers-Smith and Judith H. Myers

Siepielski et al. (Reports, 3 March 2017, 
p. 959) claim that “precipitation drives 
global variation in natural selection.” This 
conclusion is based on a meta-analysis of 
the relationship between climate variables 
and natural selection measured in wild 
populations of invertebrates, plants, and 
vertebrates. Three aspects of this analysis 

cause concern: (i) lack of within-year climate 
variables, (ii) low and variable estimates of 
covariance relationships across taxa, and (iii) 
a lack of mechanistic explanations for the pat-
terns observed; association is not causation.
Full text: dx.doi.org/10.1126/science.aan5028

Response to Comment on “Precipitation 

drives global variation in natural selection”

Adam M. Siepielski, Michael B. Morrissey, 

Mathieu Buoro, Stephanie M. Carlson, 

Christina M. Caruso, Sonya M. Clegg, Tim 

Coulson, Joseph DiBattista, Kiyoko M. 

Gotanda, Clinton D. Francis, Joe Hereford, 

Joel G. Kingsolver, Kate E. Augustine, 

Loeske E. B. Kruuk, Ryan A. Martin, Ben 

C. Sheldon, Nina Sletvold, Erik I. Svensson, 

Michael J. Wade, Andrew D. C. MacColl

The Comment by Myers-Smith and Myers 
focuses on three main points: (i) the lack 
of a mechanistic explanation for climate-
selection relationships; (ii) the appropriate-
ness of the climate data used in our analysis; 
and (iii) our focus on estimating climate-
selection relationships across (rather than 
within) taxonomic groups. We address these 
critiques in our response.
Full text: dx.doi.org/10.1126/science.aan5760
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